
Honours Individual Project Dissertation

ENCODING SESSION TYPES INTO
LINEAR TYPES IN π-CALCULUS

John Bell
March 27, 2019

i

Abstract

π-calculus, and the encoding from session types to linear types in π-calculus, can both be difficult
to understand for people first learning of them, and the encoding can be hard to use even with
experience. This project attempted to remedy this with a web app that would both teach new
users about the concepts of pi calculus, and help those using the encoding by allowing them to
encode types and processes automatically. The web app was found to be moderately helpful in
teaching pi calculus, but with room for improvement.

i

Education Use Consent

I hereby grant my permission for this project to be stored, distributed and shown to other
University of Glasgow students and staff for educational purposes. Please note that you are
under no obligation to sign this declaration, but doing so would help future students.

Signature: John Bell Date: 25 March 2019

ii

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Aims 1
1.3 Outline 1

2 Background 3
2.1 π-Calculus 3
2.2 Session Types 3

2.2.1 Typechecking 5
2.2.2 Semantics 8

2.3 Linear Types 9
2.3.1 Typechecking 10
2.3.2 Semantics 11

2.4 Encoding 12

3 Design 15
3.1 Syntax 15
3.2 Typing Extensions 16
3.3 Web Interface 17

4 Implementation 23
4.1 Architecture 23
4.2 Web Interface 23
4.3 Encoding 24
4.4 Typechecking 26
4.5 Semantics 29

5 Evaluation 31
5.1 User Study 31

6 Conclusion 37
6.1 Related Works 37
6.2 Future Work 38

Appendices 40

A Appendices 40
A.1 User Study Survey 40
A.2 User Study Ethics Checklist 43
A.3 User Study Introduction Script 44
A.4 User Study Debriefing Script 45

Bibliography 46

1

1 Introduction

1.1 Motivation

π-Calculus, and the encoding from session types to linear types in π-calculus, are both useful
tools in theoretical computing science. Due to how abstract they are, many people find them
complicated and confusing. To mitigate this, we have created a teaching tool, allowing users to
learn about, and get experience with, π-calculus, session types, linear types and the encoding. As
well as theoretical uses, π-calculus also has practical applications, and in helping users understand
the theoretical concepts, we also help them make use of these practical applications.

The tool was created not just to help people better understand π-calculus but also to act as
a utility for those working with the encoding. The encoding of session-typed π-calculus into
linear-typed π-calculus is cumbersome and complex, especially with larger processes. By creating
a tool which can perform the encoding automatically, we can remove much of the effort of
working with it.

As the encoding turns session-typed π-calculus into linear-typed π-calculus, having a tool to
perform the encoding would also allow people to use tools designed for π-calculus with linear
types on programs in π-calculus with session types. This would however require some additional
development into creating an intermediate link between this tool and existing tools, due to
differences between them.

1.2 Aims

The goal of this project was to create a tool which can be used both to teach π-calculus, session
types, linear types and the encoding, and also to aid those already familiar with the concepts in
using the encoding. As such, the primary aims for the tool were:

• Explanations of the concepts behind π-calculus, session types, linear types and the encoding.
• An environment to write code in both session- or linear-typed π-calculus.
• The ability to execute the π-calculus code you have written.
• The ability to typecheck the π-calculus code you have written.
• The ability to encode session-typed π-calculus programs you have written into linear-typed
π-calculus.

For the purposes of teaching, the tool is intended to be used in conjunction with another
means of learning π-calculus, but it can also be used on its own.

1.3 Outline

This work details the creation of a web app designed as a learning tool for π-calculus and the
encoding from session types to linear types. This includes the decisions made in design to aid in

2

facilitating understanding of these concepts, and the technical development of the tool. It also
considers how effective the tool will be in its purpose, and an analysis of the tool as a product.
The remainder of this work is structured as follows:

Chapter 2 - Background This chapter describes the theory behind the app, detailing π-calculus,
session and linear types, and the encoding from the former to the latter.

Chapter 3 - Design This chapter exhibits the thought behind the design decisions that went
into the app and their intended effects on its effectiveness.

Chapter 4 - Implementation This chapter details the technologies and methods employed to
create the app and the reasoning behind them.

Chapter 5 - Evaluation This chapter discusses an effort to measure how useful the app is in its
intended purpose as a teaching tool.

Chapter 6 - Conclusion This chapter reflects on the app and how it compares to similar tools
and how it may be further developed.

3

2 Background

2.1 π-Calculus

π-Calculus is a process calculus, created by Milner et al. (1992), as an extension of CCS
(Calculus of Concurrent Systems) by Milner (1980). Process calculi are methods of modelling
concurrent computation, represented as processes passing messages between each other. What
makes π-calculus different from other process calculi is that it allows those messages to be the
channels on which communication occurs. This means that while other process calculi describe
systems with a fixed network configuration, π-calculus can represent systems where it may
change, e.g. one member of the network informing another member about the location of a third
member, allowing those two to communicate. In this work, we consider two typing disciplines
to π-calculus: Session Types, described in Section 2.2 and Linear Types, described in Section 2.3.

2.2 Session Types

Session types are a type system designed for process calculi used to add structure to com-
munication. A session has a defined protocol, denoting an ordered set of interactions which
communication must follow. (Honda et al. 1998) Session types also define two types and cor-
responding processes which are used to create choice in processes, branch and select. Session
types can be applied to π-calculus to add structure to its communications. Session types also
provide π-calculus with privacy to communication, as the session is known only to the processes
communicating through it. In this work, we denote sessions through co-names as presented in
Vasconcelos (2012). However, following the example of Dardha et al. (2017), we use co-names
only for sessions. This allows us to more easily express the concept of duality of session types.
Sessions specify the structure of the communication symmetrically for each endpoint of the
session, for instance, when one endpoint is set to send a particular type, the other is set to receive
that same type. This symmetry in the types of sessions is the duality of session types, where
each session type is designated another as its dual. Figure 2.1 defines the syntax of session-typed
π-calculus, and Figure 2.2 presents each session type’s dual.

4

T ::= S (Session Type) S ::= end (Termination)
#T (Standard Channel) ?T .S (Receive)
Unit (Unit Type) !T .S (Send)
. . . (Other Constructs) &{li : Si }i ∈I (Branch)

⊕ {li : Si }i ∈I (Select)

P ,Q ::= x!〈v〉.P (Output) 0 (Inaction)
x?(w).P (Input) P | Q (Composition)
x / lj .P (Selection) (ν xy) P (Session Restriction)
x . {li : Pi } (Branching) (ν x) P (Channel Restriction)

v ::= x (Name) * (Unit Value)

Figure 2.1: The standard syntax of session-typed π-calculus. Presented above the line is the syntax of
types, and below the line processes and values. Input and Output are the two constituent parts of a basic
communication; a value sent by an output is received by an input composed in parallel. Selection and
Branching represent choice; Branching o�ers a range of possible ways to continue, and Selection chooses one
of those. This figure has been adapted from Dardha et al. (2017).

end , end

!T .S , ?T .S

?T .S , !T .S

⊕{li : Si }i ∈I , &{li : S i }i ∈I

&{li : Si }i ∈I , ⊕{li : S i }i ∈I

Figure 2.2: Duality of session types. For a session endpoint of any particular type, the type of the other
endpoint in the session is the dual of that type. This figure has been adapted from Dardha et al. (2017).

Throughout this work, we will illustrate various concepts by means of an example process that
we will call the maths server. This process, presented in Figure 2.3, represents a server offering
three mathematical services: addition of two integers, equality checking of two integers, or the
negation of one integer; and a simple client, requesting the equality checking service on the
integers 3 and 5. For this, we will consider integers and booleans to be predefined, as well as the
operations used on them. We also present the types of the session endpoints used in the process.
We will name these processes and types for ease of later reference.

5

server , x . {plus : x?(v1).x?(v2).x!〈v1 +v2〉.0,
equal : x?(v1).x?(v2).x!〈v1 == v2〉.0,
neд : x?(v).x!〈v1 ∗ −1〉.0}

client , y / equal .y!〈3〉.y!〈5〉.y?(eq).0

sv , &{plus : ?Int.?Int.!Int.end,
equal : ?Int.?Int.!Bool.end,
neд : ?Int.!Int.end}

cl , ⊕{plus : !Int.!Int.?Int.end,
equal : !Int.!Int.?Bool.end,
neд : !Int.?Int.end}

(ν xy) (server | client)

Figure 2.3: The maths server process that will be used as an example throughout this work. For convenience,
each part of the process has been given a name, as have the types of the session endpoints. Here, sv is the
name of the type of x, and cl the type of y. This process has been adapted from Dardha et al. (2017).

2.2.1 Typechecking

We typecheck π-calculus code to ensure that the structure we have given to the code is correct.
We do so by using a partial function from names to types known as a typing context, denoted as
Γ. The typing context for a process should contain the types of all the variables in that process.
A typing context containing the type of a variable is denoted Γ ` v : T , and a process being
well-typed under a context is denoted Γ ` P . To handle the linearity of session-types, we have
predicates for linear (lin) and unrestricted (un) types and contexts (Vasconcelos 2012), and an
operator ◦ known as the context split. These are defined in Figure 2.4.

lin(T) if T is a session type and T , end
un(T) otherwise
lin(Γ) if Γ ` x : T where lin(T)
un(Γ) otherwise

∅ = ∅ ◦∅
Γ = Γ1 ◦ Γ2 un(T)

Γ,x : T = (Γ1,x : T) ◦ (Γ2,x : T)

Γ = Γ1 ◦ Γ2 lin(S)
Γ,x : S = (Γ1,x : S) ◦ Γ2

Γ = Γ1 ◦ Γ2 lin(S)
Γ,x : S = Γ1 ◦ (Γ2,x : S)

Figure 2.4: The rules for the lin and un predicates and the context split operator. These are used to ensure
the privacy of session types, as the rules mean that each endpoint can appear in only one of the split contexts.
This figure has been adapted from Dardha et al. (2017).

To typecheck a process or value under a particular context, typing rules are applied. These
typing rules have the structure that if some premise is true then the conclusion, that some process

6

or value is well-typed under this context, is true. The premise of a typing rule typically contains
the conclusion of another typing rule. Typing rules are applied to the premise of the previous
rule, until all rules reach premises that are otherwise proven, typically that the typing context in
this rule is unrestricted. The typing rules for session-typed π-calculus are presented in Figure
2.5. Figure 2.6 demonstrates how these rules are used, in a full typechecking proof of the maths
server process.

(T-Var)

un(Γ)
Γ,x : T ` x : T

(T-Val)

un(Γ)
Γ ` * : Unit

(T-Inact)

un(Γ)
Γ ` 0

(T-Par)
Γ1 ` P Γ2 ` Q

Γ1 ◦ Γ2 ` P | Q

(T-Res)

Γ,x : S,y : S ` P
Γ ` (ν xy) P

(T-StndRes)

Γ,x : T ` P T is not an S
Γ ` (ν x) P

(T-In)

Γ1 ` x : ?T .S Γ2,x : S,y : T ` P
Γ1 ◦ Γ2 ` x?(w).P

(T-StndIn)

Γ1 ` x : #T Γ2,x : #T ,y : T ` P
Γ1 ◦ Γ2 ` x?(w).P

(T-Out)
Γ1 ` x : !T .S Γ2 ` v : T Γ3,x : S ` P

Γ1 ◦ Γ2 ◦ Γ3 ` x!〈v〉.P

(T-StndOut)

Γ1 ` x : #T Γ2 ` v : T Γ3,x : #T ` P
Γ1 ◦ Γ2 ◦ Γ3 ` x!〈v〉.P

(T-Sel)

Γ1 ` x : ⊕{li : Ti }i ∈I Γ2,x : Tj ` P ∃j ∈ I
Γ1 ◦ Γ2 ` x / lj .P

(T-Brch)

Γ1 ` x : &{li : Ti }i ∈I Γ2,x : Ti ` Pi ∀i ∈ I
Γ1 ◦ Γ2 ` x . {li : Pi }

Figure 2.5: The rules used to typecheck session-typed π-calculus. The typing rules for processes all follow
a rough pattern that the current typing context is split into contexts checking that the current operation is
well-typed, and a context augmented with the results of the current operation checking that the continuation
process is well-typed. This figure has been adapted from Dardha et al. (2017).

7

(I) (I I) (I I I) (IV)

Γ1 ` x . {plus : P1 , equal : P2 , neд : P3}
(V) (V I)

Γ2 ` y / equal .Q

Γ,x : sv,y : cl ` (server | client
Γ ` (ν xy) server | client)

un(Γ1a \ x : &{plus : ?I.?I.!I.end, equal : ?I.?I.!B.end,neд : ?I.!I.end})
Γ1a ` x : &{plus : ?I.?I.!I.end, equal : ?I.?I.!B.end,neд : ?I.!I.end}

(I)

un(Γ1c \ x : . . .)
Γ1c ` x : . . .

un(Γ1e)
Γ1e ` x : . . .

un(Γ1д)
Γ1д ` x : . . .

v1 +v2 : I
un(Γ1h ,x : end)
Γ1h ,x : end ` 0

Γ1f ,x : !I.end,v2 : I ` x!〈v1 +v2〉.0
Γ1d ,x : ?I.!I.end,v1 : I ` x?(v2).x!〈v1 +v2〉.0

Γ1b ,x : ?I.?I.!I.end ` x?(v1).x?(v2).x!〈v1 +v2〉.0
(I I)

un(Γ1i \ x : . . .)
Γ1i ` x : . . .

un(Γ1k)
Γ1k ` x : . . .

un(Γ1m)
Γ1m ` x : . . .

v1 == v2 : B
un(Γ1n ,x : end)
Γ1n ,x : end ` 0

Γ1l ,x : !B.end,v2 : I ` x!〈v1 == v2〉.0
Γ1j ,x : ?I.!B.end,v1 : I ` x?(v2).x!〈v1 == v2〉.0

Γ1b ,x : ?I.?I.!B.end ` x?(v1).x?(v2).x!〈v1 == v2〉.0
(I I I)

un(Γ1o \ x : . . .)
Γ1o ` x : . . .

un(Γ1q)
Γ1q ` x : . . .

v ∗ −1 : I
un(Γ1r ,x : end)
Γ1r ,x : end ` 0

Γ1p ,x : !I.end,v1 : I ` x!〈v ∗ −1〉.0
Γ1b ,x : ?I.!I.end ` x?(v).x!〈v ∗ −1〉.0

(IV)

un(Γ2a \ y : ⊕{plus : !I.!I.?I.end, equal : !I.!I.?B.end,neд : !I.?I.end})
Γ2a ` y : ⊕{plus : !I.!I.?I.end, equal : !I.!I.?B.end,neд : !I.?I.end}

(V)

un(Γ2c \ y : . . .)
Γ2c ` y : . . .

3 : I

un(Γ2e)
Γ2e ` y : . . .

5 : I

un(Γ2д)
Γ2д ` y : . . .

un(Γ2h ,y : end)
Γ2h ,y : end, eq : B ` 0

Γ2f ,y : ?B.end ` y?(eq).0
Γ2d ,y : !I.?B.end ` y!〈5〉.y?(eq).0

Γ2b ,y : !I.!I.?B.end ` y!〈3〉.y!〈5〉.y?(eq).0
(V I)

Γ = Γ1 ◦ Γ2, Γ1 = Γ1a ◦ Γ1b , Γ2 = Γ2a ◦ Γ2b

Γ1b ,x : ?I.?I.!I.end = Γ1c ◦ Γ1d , Γ1d ,x : ?I.!I.end,v1 : I = Γ1e ◦ Γ1f ,

Γ1f ,x : !I.end,v2 : I = Γ1д ◦ Γ1h

Γ1b ,x : ?I.?I.!B.end = Γ1i ◦ Γ1j , Γ1j ,x : ?I.!B.end,v1 : I = Γ1k ◦ Γ1l ,

Γ1l ,x : !B.end,v2 : I = Γ1m ◦ Γ1n

Γ1b ,x : ?I.!I.end = Γ1o ◦ Γ1p , Γ1p ,x : !I.end,v1 : I = Γ1q ◦ Γ1r

Γ2b ,y : !I.!I.?B.end = Γ2c ◦ Γ2d , Γ2d ,y : !I.?B.end = Γ2e ◦ Γ2f ,

Γ2f ,y : ?B.end = Γ2д ◦ Γ2h

Figure 2.6: A full type derivation for the maths server process. Various parts are presented separately,
and types Int and Bool are shortened to I and B, for spacing. Typing judgements of literal values and
expressions are considered self-evident here and do not need to be proven with a typing rule.

8

2.2.2 Semantics

The operational semantics of π-calculus is represented as a binary relation called reduction.
Each reduction can be thought of as a single step of execution, and typically replaces processes
with their continuations. Execution finishes successfully when all processes are reduced to the
termination process, or fails when no further reductions can be made while some processes
are not terminated. As most reductions represent a communication between two processes,
parallel composition is essential to reduction. Reduction typically results in the replacement of
bounded variables. The reduction rules for session-typed π-calculus are presented in Figure
2.7. The reduction rule (R-Struct) uses structural congruence between processes. The structural
congruence relation is defined as the smallest congruence relation satisfying the axioms presented
in Figure 2.8. Figure 2.9 shows how the reduction rules are applied to the maths server process.

(ν xy) (x!〈v〉.P | y?(w).Q) → (ν xy) (P | Q[v/z]) (R-Com)
x!〈v〉.P | x?(w).Q → P | Q[v/w] (R-StndCom)

(ν xy) (x / lj .P | y . {li : Pi }i ∈I) → (ν xy) (P | Pj) (R-Case)
P → Q =⇒ (ν x) P → (ν x)Q (R-StndRes)
P → Q =⇒ (ν xy) P → (ν xy)Q (R-Res)
P → Q =⇒ P | R → Q | R (R-Par)

P ≡ P ′, P → Q,Q ′ ≡ Q =⇒ P ′→ Q ′ (R-Struct)

Figure 2.7: A list of the reduction rules used to execute processes in session-typed π-calculus. [v/w]
represents the replacement of w with v. The first three of these rules are the reductions themselves, and the
others are properties of the reductions. R-Com and R-Case can only occur under a session restriction to
ensure the privacy of sessions. This figure has been adapted from Dardha et al. (2017).

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P

(ν xy) 0 ≡ 0
(ν x) 0 ≡ 0

(ν xy) (ν vw) P ≡ (ν vw) (ν xy) P

(ν x) P | Q ≡ (ν x) (P | Q)

(ν xy) P | Q ≡ (ν xy) (P | Q)

Figure 2.8: The axioms which the structural congruence relation must satisfy. These state the commu-
tativity and associativity of parallel composition and that the inaction is the neutral element of parallel
composition, as well as that restrictions on an inaction are unnecessary, order of restrictions does not matter,
and restrictions can be extended to include other processes. The two axioms stating the extension of
restrictions are only true when this extension does not cause the capture of names, i.e. x and y are not free
names in Q. This figure has been adapted from Dardha et al. (2017).

9

(ν xy) (server | client) , (ν xy) (x . {. . . equal : Pe , . . . } | y / equal .y!〈3〉.y!〈5〉.y?(eq).0)
→ (ν xy) (x?(v1).x?(v2).x!〈v1 == v2〉.0 | y!〈3〉.y!〈5〉.y?(eq).0)
→ (ν xy) (x?(v2).x!〈3 == v2〉.0[3/v1] | y!〈5〉.y?(eq).0)
→ (ν xy) (x!〈3 == 5〉.0[3/v1][5/v2] | y?(eq).0)
→ (ν xy) (0[3/v1][5/v2] | 0[False/eq])
≡ 0

Figure 2.9: The reduction rules being applied to the example process to show how it is executed. The
rules being applied are, in order, R-Case, R-Com, R-Com and R-Com. Structural congruence is then
used to simplify the fully reduced process to a single inaction.

2.3 Linear Types

Linear types are an extension of π-calculus, created by Kobayashi et al. (1999). They extend
the idea of polarised channels (Odersky 1995; Pierce and Sangiorgi 1996), channels which can
only communicate in one direction, by adding the limitation that they can only do such a
communication once, after which they cannot be used in any form of communication. This can
be used to preserve privacy of communication and prevent interference from other processes.
We also use the variant type (Sangiorgi 1998), a type which allows a value to be one of multiple
different type options. This is used alongside the Case process to add choice in processes. Figure
2.10 presents the syntax of linear-typed π-calculus, and Figure 2.11 describes the duality of linear
types.

τ ::= lo[τ̃] (Linear Output) #[τ̃] (Standard Connection)
li [τ̃] (Linear Input) 〈li_τi 〉i ∈I (Variant Type)
l#[τ̃] (Unit Type) Unit (Unit Type)
∅[] (Other Constructs) . . . (Other Constructs)

P ,Q ::= x!〈ṽ〉.P (Output) 0 (Inaction)
x?(w̃).P (Input) P | Q (Composition)
(ν x) P (Restriction) casev of{li_(xi) . Pi }i ∈I (Case)

v ::= x (Name) * (Unit Value)
l_v (Variant Value)

Figure 2.10: The standard syntax of linear-typed π-calculus. Presented above the line is the syntax
of types, below the line processes and values. As in session types, Input and Output represent basic
communication, but here, choice is handled through the Case. Unlike Branching and Selection, Case handles
choice within a single process; there does not need to be two processes composed in parallel for a choice to be
made through Case. τ̃ and ṽ are used to denote a sequence of types and a sequence of values respectively.
This figure has been adapted from Dardha et al. (2017).

10

li [τ̃] , lo[τ̃]

lo[τ̃] , li [τ̃]

∅[] , ∅[]

Figure 2.11: Duality of linear types. A process possessing one capability of a linear channel can only
communicate with a process possessing the dual of that capability of the same linear channel. This figure
has been adapted from Dardha et al. (2017).

2.3.1 Typechecking

Typechecking in linear types is similar to in session types. The lin and un predicates are
still used with largely similar definitions, but instead of context split, there is instead a context
combination operator]. This operator and the rules for lin and un in linear types are defined
in Figure 2.12. The typing rules for linear-typed π-calculus are presented in Figure 2.13.

lin(τ) if τ = lα [τ̃] or (τ = 〈li_τi 〉i ∈I and for some j ∈ I ,lin(τj))
un(τ) otherwise

lin(Γ) if Γ ` x : τ where lin(τ)
un(Γ) otherwise

li [τ̃]] lo[τ̃] , l#[τ̃]

τ] τ , τ if un(τ)
τ] τ ′ , undef otherwise

(Γ1] Γ2)(x) ,

Γ1(x)] Γ2(x) if both Γ1(x) and Γ2 are defined
Γ1(x) if Γ1(x), but not Γ2 is defined
Γ2(x) if Γ2(x), but not Γ1 is defined
undef otherwise

Figure 2.12: The rules for the lin and un predicates and the context combination operator. These are
used to ensure the privacy of linear channels. This figure has been adapted from Dardha et al. (2017).

11

(Tπ-Var)

un(Γ)
Γ,x : τ ` x : τ

(Tπ-Val)

un(Γ)
Γ ` * : Unit

(Tπ-LVal)
Γ ` v : τj j ∈ I

Γ ` lj_v : 〈li_τi 〉i ∈I

(Tπ-Inact)

un(Γ)
Γ ` 0

(Tπ-Par)
Γ1 ` P Γ2 ` Q

Γ1] Γ2 ` P | Q

(Tπ-Res1)

Γ,x : l#[τ̃] ` P
Γ ` (ν x) P

(Tπ-Res2)

Γ,x : empty[] ` P
Γ ` (ν x) P

(Tπ-Inp)

Γ1 ` x : li [τ̃] Γ2, ỹ : τ̃ ` P
Γ1] Γ2 ` x?(w̃).P

(Tπ-StndInp)

Γ1 ` x : #[τ̃] Γ2,x : #[τ̃], ỹ : τ̃ ` P
Γ1] Γ2 ` x?(w̃).P

(Tπ-Out)

Γ1 ` x : lo[τ̃] Γ̃2 ` ṽ : τ̃ Γ3 ` P

Γ1] Γ2] Γ3 ` x!〈ṽ〉.P

(Tπ-StndOut)

Γ1 ` x : #[τ̃] Γ̃2 ` ṽ : τ̃ Γ3,x : #[τ̃] ` P
Γ1] Γ2] Γ3 ` x!〈ṽ〉.P

(Tπ-Case)

Γ1 ` v : 〈li_τi 〉i ∈I Γ2,xi : τi ` Pi ∀i ∈ I
Γ1] Γ2 ` casev of{li_(xi) . Pi }i ∈I

Figure 2.13: A list of the rules used to typecheck processes in linear-typed π-calculus. Most of these are
similar to those in session-typed π-calculus, with the exception of Tπ-LVal and Tπ-Case. This figure
has been adapted from Dardha et al. (2017).

2.3.2 Semantics

The operational semantics of linear-typed π-calculus is similar to those of session-typed π-
calculus. The reduction rules for linear-typed π-calculus are presented in Figure 2.14. A notable
difference is that rule (Rπ-Case) is a reduction containing no parallel composition of processes,
instead reducing only a single process, something which does not occur in session-typed π-
calculus.

x!〈ṽ〉.P | x?(w̃).Q → P | Q[ṽ/w̃] (Rπ-Com)
case lj_v of{li_(xi) > Pi }i ∈I → Pj [v/x j] j ∈ I (Rπ-Case)

P → Q =⇒ (ν x) P → (ν x)Q (Rπ-Res)
P → Q =⇒ P | R → Q | R (Rπ-Par)

P ≡ P ′, P → Q,Q ′ ≡ Q =⇒ P ′→ Q ′ (Rπ-Struct)

Figure 2.14: A list of the reduction rules used to execute processes in linear-typed π-calculus. [v/w]
represents the replacement of w with v. The first two of these rules are the reductions themselves, and the
others are properties of the reductions. This figure has been adapted from Dardha et al. (2017).

12

2.4 Encoding

The encoding from session-typed π-calculus to linear-typed π-calculus was created by Dardha
et al. (2012; 2017), and uses the continuation-passing principle. While communication can occur
over a pair of session endpoints multiple times, communication over a linear channel can occur
only once. To get around this, alongside every communication between processes, the encoding
creates a new linear channel and sends one of the capabilities of this new channel alongside the
original payload. This gives each of the communicating processes access to the new channel,
on which communication continues. The encoding uses a renaming function, f , to replace the
session co-names in processes with the continuation channel that would be in use at that point of
the process. The rules for encoding session-types and session-typed processes are presented in
Figure 2.15.

nendo , ∅[] (E-End)

n?T .So , li [nTo, nSo] (E-Inp)

n!T .So , lo[nTo, nSo] (E-Out)

n&{li : Si }i ∈I o , li [<li_nSoi>i ∈I] (E-Branch)

n⊕{li : Si }i ∈I o , lo[<li_nSoi>i ∈I] (E-Select)

nxof , fx (E-Name)

n*of , * (E-Star)

n0of , 0 (E-Inaction)

nP | Qof , nPof | nQof (E-Composition)

n(ν xy) Pof , (ν c) nPof , {x,y 7→c } (E-Restriction)

n(ν z) Pof , (ν z) nPof (E-StndRestriction)

nx!〈v〉.Pof , (ν c) fx!〈nvof , c〉.nPof , {x 7→c } (E-Output)

nx?(w).Pof , fx?(w, c).nPof , {x 7→c } (E-Input)

nx / lj .Pof , (ν c) fx!〈lj_c〉.nPof , {x 7→c } (E-Selection)

nx . {li : Pi }i ∈I of , fx?(y).casey of{li_(c) > nPiof , {x 7→c }}i ∈I (E-Branching)

Figure 2.15: A list of the rules used to encode session-typed π-calculus into linear-typed π-calculus. f is
the encoding function, a renaming function used to replace session endpoints with continuation channels.
This figure has been adapted from Dardha et al. (2017).

The encoding of the session type end is simply a channel with no capabilities, as no com-
munication can occur on either of those types. The encoding of input and output are similar
to each other: The type is encoded into a linear channel corresponding to its action (input or
output) whose two payloads are the encoding of the original payload and the encoding of the
continuation type. However, in output, the dual of the continuation type is encoded instead.
This is because the linear channel must send the capability that the recipient process will be using,
not the capability that the sending process will be using.

To illustrate, the type !Int.!Int.end would become lo[Int, li [Int,∅[]]]. Meanwhile, the
dual of this type, ?Int.?Int.end becomes li [Int, li [Int,∅[]]]. As the sending process sends

13

the first integer, the process which receives this integer must now be prepared to receive another,
thus the continuation channel that the sending process sends must be capable of receiving an
integer. This means that the duality of session types, when encoded, becomes duality in the
capability of only the outermost linear channel.

The encoding of branch and select are that they become a linear input and linear output
channel respectively, whose payload is a variant type containing the continuation types of the
branch and select. The duals of the continuation types of select are used for the same reason as in
output.

Session restriction is encoded into a channel restriction containing a linear connection, with the
encoding function for the continuation process updated such that both of the session co-names
are replaced with the name of the linear connection. The idea here is that each endpoint is
replaced with one of the capabilities of the connection.

The encoding of output processes is the core of the continuation-passing principle. It inserts a
channel restriction in front of the output process, containing a linear connection. This linear
connection is the continuation channel. One of its capabilities is sent along the encoding function’s
current replacement for the session endpoint and the other is kept for the continuation process.
The encoding function is updated to replace the session endpoint with the new continuation
channel. The encoding of input processes is simpler: it adds to the input process another payload,
the continuation channel, which the encoding function is updated with as the replacement for
the session endpoint.

The encoding of selection replaces the select process with a channel restriction, creating the
continuation channel, and an output process sending a variant value, comprised of the label
being selected and the continuation channel. The encoding function is updated as always. The
encoding of branching replaces the branch process with a receive process which receives a variant
value, and a case process using the received variant value as its choice variable. The encoding
function is updated with the continuation channel, embedded in the variant value, to replace the
session endpoint and this updated encoding function is used to encode each of the continuation
processes.

To demonstrate how these encoding rules work in practice, Figure 2.16 presents the encoding
being used to produce a linear-typed version of the maths server process.

14

n(ν xy) (server | client)o∅ = (ν c) n(server | client)o{x,y 7→c }

= (ν c) (nservero{x 7→c } | ncliento{y 7→c })

nservero{x 7→c } = c?(s).casesof{
plus_(c ′) . c ′?(v1, c ′′).c ′′?(v2, c ′′′).(ν c ′′′′)c ′′′!〈v1 +v2, c ′′′′〉.0,
equal_(c ′) . c ′?(v1, c ′′).c ′′?(v2, c ′′′).(ν c ′′′′)c ′′′!〈v1 == v2, c ′′′′〉.0,
neд_(c ′) . c ′?(v1, c ′′).(ν c ′′′)c ′′!〈v1 +v2, c ′′′〉.0,

ncliento{y 7→c } = (ν c
′)c!〈equal_c ′〉.(ν c ′′)c ′!〈3, c ′′〉.(ν c ′′′)c ′′!〈5, c ′′′〉.c ′′′?(eq, c ′′′′).0

nsvo = li [〈plus_li [Int, li [Int, lo[Int,∅[]]]],
equal_li [Int, li [Int, lo[Bool,∅[]]]],
neд_li [Int, lo[Bool,∅[]]] 〉]

nclo = lo[〈plus_li [Int, li [Int, lo[Int,∅[]]]],
equal_li [Int, li [Int, lo[Bool,∅[]]]],
neд_li [Int, lo[Bool,∅[]]] 〉]

Figure 2.16: The encoding of the maths server process. This demonstrates how the continuation-passing
principle works. For each communication, one process creates a channel and sends it alongside the original
payload, and both processes use that channel for the next communication. This figure has been adapted
from Dardha et al. (2017).

The encoding is useful because it eliminates the need for various proofs. As the encoding allows
session-typed π-calculus to be expressed in terms of standard π-calculus constructs, properties
which have already been proven for these constructs can now be applied to session-typed π-
calculus without proving them again separately. Additionally, types are no longer separated
into two syntactic categories, as they were in session-typed π-calculus, as shown in Figure
2.1. Having two syntactic categories produced the need for separate proofs for each category,
which the encoding also eliminates. This gives us the benefits of session-typed π-calculus for
substantially less theoretical complexity than if the encoding did not exist.

However, while the theoretical complexity is reduced, the practical complexity increases.
Performing the encoding of a process by hand is difficult and cumbersome. And as the original
process becomes larger, its encoding also grows at a higher rate, due to the inserted channel
restrictions, making the encoding even more arduous. As mentioned previously in Section 1.1,
this is part of the reasoning behind our project. By creating a tool which can perform the
encoding of a process automatically, we can remove this practical complexity as well.

15

3 Design

3.1 Syntax

In the web app’s syntax, π-calculus code is structured as an optional list of declarations followed
by a process. These declarations are mostly type declarations of variables but can also contain
variable assignments, process naming and type naming. Process and type naming were included
to help simplify code, allowing complicated processes or types to be written only once and
referred back to when needed.

The web app’s π-calculus syntax differs in some ways from the standard π-calculus syntax.
The most obvious difference is the use of English words in processes. Where the standard syntax
would use symbols such as ! and ?, the web app instead uses the words send and receive.
Types still use the same symbols as in the standard syntax, or the closest approximation available
on standard keyboards. This change was made to processes to try to make it more readable, while
types were kept the same to distinguish them from processes at a glance, and also to add a link
back to the standard syntax. Figure 3.1 shows all of these such differences.

x?(w).P 7−→ receive(x ,w : T).P
x!〈v〉.P 7−→ send(x ,v).P

x / {li : Pi }i ∈I 7−→ branch(x){li : Pi }i ∈I
x . lj .P 7−→ select(x , lj).P
(ν x) P 7−→ (new x : T) (P)

0 7−→ stop

⊕{li : Ti }i ∈I 7−→ +{li : Ti }i ∈I
li [τ̃] 7−→ li[τ̃]
lo[τ̃] 7−→ lo[τ̃]
l#[τ̃] 7−→ l#[τ̃]
∅[] 7−→ empty[]

Figure 3.1: A list of all the changes made for the web app’s syntax. These changes were made in the hopes
of being easier to understand for beginners. ∅[] was initially changed to /[], but this was found to be hard
to read, particularly at the end of a highly-nested type, so empty[] was used instead to be more readable.

As can be seen in the modified syntax for input processes and restrictions, the other main difference
is the presence of type annotations. Type annotations are used to indicate the type of bounded
variables. For example, in the standard π-calculus, an input process would resemble x?(v).P,
which gives no information on what v is expected to be. In the web app, this would resemble
receive(x, v : sInt).P from which we can see that v is an integer value. This helps make it
more clear what variables are intended for, and thus what a process does.

16

3.2 Typing Extensions

The web app’s π-calculus possesses, as an extension on the standard π-calculus, integers, strings
and booleans as predefined types. These have possible values of any positive or negative integer,
any sequence of alphanumeric characters prepended and appended with quotation marks, and
True or False respectively. It also contains expressions on these basic types, such as integer
arithmetic or boolean algebra operations. These types and expressions were included to help the
user more easily reason about how π-calculus works and how it can be useful, as expressing all
values as channels can be confusingly abstract. Presented in Figure 3.2 are the typing rules for
these types and expressions.

(T-Int)

un(Γ) n ∈ Z

Γ ` n : sInt

(T-True)

un(Γ)
Γ ` True : sBool

(T-False)

un(Γ)
Γ ` False : sBool

(T-String)

un(Γ) l = " . . . "
Γ ` l : sString

(T-Equal)

un(Γ) Γ ` x : T ,y : T
Γ ` (x == y) : sBool

(T-Inequal)

un(Γ) Γ ` x : T ,y : T
Γ ` (x != y) : sBool

(T-Add)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x + y) : sInt

(T-Sub)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x − y) : sInt

(T-Mult)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x ∗ y) : sInt

(T-Div)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x/y) : sInt

(T-Mod)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x%y) : sInt

(T-Greater)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x > y) : sBool

(T-GreaterEq)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x >= y) : sBool

(T-Less)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x < y) : sBool

(T-LessEq)

un(Γ) Γ ` x : sInt,y : sInt
Γ ` (x <= y) : sBool

(T-Not)

un(Γ) Γ ` x : sBool
Γ ` (NOT x) : sBool

(T-And)

un(Γ) Γ ` x : sBool,y : sBool
Γ ` (x AND y) : sBool

(T-Or)

un(Γ) Γ ` x : sBool,y : sBool
Γ ` (x OR y) : sBool

(T-Xor)

un(Γ) Γ ` x : sBool,y : sBool
Γ ` (x XOR y) : sBool

(T-Concat)

un(Γ) Γ ` x : sString,y : sString
Γ ` (x ++y) : sString

Figure 3.2: A list of the rules used to typecheck basic values and expressions in the web app’s π-calculus.
These rules shown are the rules used in session-typed π-calculus. The rules for linear-typed π-calculus,
named Tπ-__ instead of T-__, di�er only in the types sUnit, sInt, etc. instead being lUnit, lInt, etc.. In
T-String, the ellipsis represents any arbitrary sequence of alphanumeric characters.

17

3.3 Web Interface

The primary concept for the web app is that it allows people to write code in session- or
linear-typed π-calculus, encode the former into the latter, and execute both, to help improve
understanding of these concepts. So, the interface needs to have areas to enter code, and areas to
display output from performing these operations. As session-typed and linear-typed π-calculus
are different, they should have separate sections in the interface. So, the overall layout of the
interface contains four main sections: input and output sections each for session-typed and
linear-typed π-calculus. As the input sections are the sections the user would be interacting
with first, these are placed along the top to emphasise them over the output sections along the
bottom. Buttons to perform the operations on the user’s input are placed in a strip in between
the input and output sections. As the encoding occurs from session types to linear types, the
sections relating to session-typed π-calculus are placed on the left, and linear-typed on the right.
Figure 3.3 shows the interface of the web app’s main page, and Figure 3.4 shows the maths server
example entered into the interface.

Figure 3.3: The web app’s main page, as it appears when first accessing the web app. As described above,
the top-left and top-right areas are input areas to type π-calculus code for session types and linear types
respectively, and the bottom-left and bottom-right are the output areas for session types and linear types
respectively. As there is no input in either of the input areas, the buttons are all disabled, and become
enabled when there is text present in the appropriate input area.

18

Figure 3.4: The maths server example, entered into the session-typed π-calculus input area. The input
areas have horizontal scrolling, as wrapping the text onto the next line was found to be di�cult to read.

The interface has 5 buttons that perform operations on the user’s π-calculus code: An execute
button for each of session-typed and linear-typed π-calculus, a typecheck button for each, and
an encode button. The execute and encode buttons also typecheck the code alongside their own
functionality. When code is typechecked, the interface produces a success message detailing
the typing rules used. When code is executed, the interface displays a success message with a
list of the reductions made as part of execution. Encoding from session-typed to linear-typed
π-calculus produces a brief success message, and automatically inserts the encoded π-calculus
into the input area for linear-typed π-calculus. Each of these can instead produce error messages,
if some part of the operation is unsuccessful due to the user input containing incorrect or invalid
π-calculus. Figures 3.5, 3.6, 3.7, 3.8 and 3.9 show respectively the outputs of typechecking the
maths server example in session types, executing it in session types, encoding it into linear types,
typechecking the encoding, and executing the encoding.

19

Figure 3.5: Typechecking in session-typed π-calculus. This is the typechecking output for the maths
server example. T-Par structures the rest of the typing rules similarly to how the parallel composition
structures its processes, to help readability of the output. Similarly, expressions contain the typing rules of
their operands in parentheses after the typing rule for the expression itself. T-Res shows the types of the
session endpoints it is restricting, and T-Var shows the name of the variable being checked.

Figure 3.6: Execution of session-typed π-calculus. This is the execution output for the maths server
example. Each message shows what message is being passed, and what bound variables are being replaced.
Note also that the final message shows both the expression present in the output process and the value
obtained from it that is the actual payload.

20

Figure 3.7: Encoding from session-typed π-calculus into linear-typed π-calculus. This is the encoding of
the maths server example. The encoded version is clearly much longer and more complicated, only part of it
able to be shown in the input area at one time.

Figure 3.8: Typechecking in linear-typed π-calculus. This is the typechecking output for the encoding of
the maths server example. Much like the encoding itself, this is clearly much longer and more complicated
than the typechecking output of the maths server example in session types. This is due to the inserted
restrictions for continuation channels.

21

Figure 3.9: Execution of linear-typed π-calculus. This is the execution output for the encoding of the
maths server example. Unlike the encoding itself and the typechecking output, semantics in linear types
is not strongly complicated by the encoding, with only one extra reduction compared to the maths server
example in session types.

As the web app is intended as a learning tool, it contains a user guide. The user guide details
the syntax and explains the functionalities of π-calculus, to teach the user how to write valid and
meaningful π-calculus code. It also contains sections detailing the typing rules, the encoding and
the reduction rules used in execution, to give the user insight into how the web app performs
these actions. There are also some minor notes on using the web app, such as things that produce
unexpected results due to the parser being unable to interpret it as intended. Figure 3.10 shows
the beginning of the user guide.

22

Figure 3.10: The web app’s user guide. The user guide begins with a syntax guide before explaining the
concepts behind the actions of the web app, as the syntax is more important to being able to use the web
app. The sections for typechecking, semantics and encoding use figures similar to those in this work.

The interface makes use of colour to draw attention to certain aspects of the app. In the main
page, colours are used to draw attention to the labels of each section, making it clear what each
section is, and are used in the output to give the user information on what has happened at a
glance, e.g. when an action is performed successfully, the success message is highlighted in
orange, while the details are plain, or if an error occurs, the error message is red. In the user
guide, headers and sub-headers are coloured differently from each other to make the structure of
the guide clear.

23

4 Implementation

4.1 Architecture

The project is written in Python (Python Software Foundation), making use of Flask as a
framework for the web app aspects of the project, and ANTLR for the language recognition
aspects.

Flask is a web development micro-framework written in Python. By micro-framework, the
developers of Flask mean that "Flask aims to keep the core simple but extensible". (Pocoo Team)
Flask was chosen as the framework for the project for this reason. The web app is lightweight,
not requiring any significant back-end technologies found in most web apps such as databases or
user authentication. As many web app frameworks contain these features by default while Flask
does not, Flask was an ideal candidate for the project.

ANTLR, short forANother Tool for Language Recognition, is a parser generator. (Parr 2014)
Given a grammar for a language, ANTLR can automatically generate parsers that transform
something written in that language into a syntax tree, and templates for programs that traverse
that tree, performing some action at each node. This allows coders to easily create programming
languages and other tools involving files fitting a custom-defined structure. ANTLR was chosen
for the project as it allowed us to focus on the implementation of what should be done with the
π-calculus code once it has been parsed, rather than the implementation of correctly parsing it.

4.2 Web Interface

The implementation of the web interface is primarily in the file SPEncoder.py. This file
contains the code defining the Flask app, and connects the Flask app to the ANTLR code detailed
in the following sections. It handles the main page and the user guide, which simply render
HTML files SPEncoder.html and SPEGuide.html respectively.

Whenever a button on the interface is pressed, the web app’s JavaScript, defined in SPEn-
coder.js, gets the contents of the appropriate text area, and sends a request containing those
contents to a certain URL, depending on which button is pressed. These URLs are connected
to functions in SPEncoder.py that instantiate an ANTLR parser to which they give the code
supplied by the JavaScript. They then instantiate the ANTLR listeners detailed in the following
sections to perform the operation corresponding to the button pressed. The listeners produce an
output, or an error message, and SPEncoder.py returns them as JSON to SPEncoder.js,
which inserts them into the appropriate elements. This is coded using AJAX, so that the results
appear dynamically.

24

4.3 Encoding

The encoding is implemented as part of an ANTLR listener, SPEListener.py. This listener
also contains the code to perform the typechecking, as detailed in Section 4.4, which it can do
concurrently with the encoding. For a program in session-typed π-calculus code, the encoding
of this program is generated by constructing a string of the encoding from information in each
of the nodes of the syntax tree.

Before the encoding begins, a separate listener VariableNameCollector.py is run to
form a list of variable names the user has used in their code. This is done to ensure that none of
the new channels generated by the encoding use a pre-existing name. Generated channels only
use names of the form c, c’, c”, etc. which users are advised in the user guide not to use, but
VariableNameCollector.py is used in case users don’t follow this advice.

The encoding starts as a string containing a placeholder, to be used as a string builder. Each
rule of the grammar has corresponding functions which replace the first placeholder in the string
builder with a string representing the encoding of that rule, the string typically containing more
placeholders itself. Different placeholders are used to represent processes, types, declarations, etc.
A dictionary is used to act as the encoding function.

As the encoding inserts new restrictions and new payloads, these restrictions and the input
processes containing these payloads need additional type annotations. These were generated
using a dictionary contChanTypes to keep track of the type of session endpoints at the current
point in the process. When an inserted type annotation needs to be generated, a new parse tree
walker is created to traverse the current saved type of the session endpoint, using the current
listener instance. This essentially temporarily redirects the tree traversal of the listener to the
session endpoint’s type, after which it returns to where it was in the process.

Stacks are used in the listener for multiple purposes, such as to keep old copies of the encoding
function, and replace the current encoding function with these copies when appropriate. For
example, when encoding a branch process with two branches alpha and beta, a copy of the
encoding function is saved to a stack, and then the process alpha is encoded. After this, the
encoding function is replaced with the saved copy from before alpha was encoded, and the
process beta is encoded with this copy, so that the encoding of beta does not use variables
created in alpha.

Listing 4.1 presents as an example the function enterInputSesEnc, used to encode a
session-typed output process.

25

1 def enterInputSesEnc(self, ctx):
2 self.checkBranchStack(False)
3 self.checkCompStack(False)
4 if isinstance(self.contChanTypes[ctx.channel.getText()],

PiCalcParser.ChannelTypeContext):
5 self.encodedStrBuilder = self.encodedStrBuilder.replace(u" ", "receive(" +

ctx.channel.getText() + ", " + ctx.payload.getText() + u" : N). ", 1)
6 else:
7 ipStrBuilder = "receive(" + self.encodeName(ctx.channel.getText()) + ", " +

ctx.payload.getText() + u" : ?"
8 newChan = self.generateChannelName()
9 newChanType = self.contChanTypes[ctx.channel.getText()].sType()
10 self.contChanTypes[ctx.channel.getText()] = newChanType
11 if isinstance(ctx.plType, PiCalcParser.SessionTypeContext):
12 self.contChanTypes[ctx.payload.getText()] = ctx.plType.sType()
13 elif isinstance(ctx.plType, PiCalcParser.ChannelTypeContext):
14 self.contChanTypes[ctx.payload.getText()] = ctx.plType
15 ipStrBuilder = ipStrBuilder + ", " + newChan + u" : N). "
16 self.encFunc[ctx.channel.getText()] = newChan
17 self.encodedStrBuilder = self.encodedStrBuilder.replace(u" ", ipStrBuilder,

1)
18 typeWalker = ParseTreeWalker()
19 typeWalker.walk(self, newChanType)
20 self.encodedStrBuilder = self.encodedStrBuilder.replace(u"?", u"N", 1)

Listing 4.1: enterInputSesEnc, the function used to encode a session-typed input process. ctx is
the ANTLR context of the current instance of the grammar rule. It is the object containing everthing found
within this instance, such as the ANLTR contexts of instances of other grammar rules that appear within
this instance’s rule. self.checkBranchStack and self.checkCompStack check whether the
current process is the initial process in the continuation of a branch or an arm of a parallel composition
respectively and the encoding function or list of existing variable names should therefore be reset. These
functions are both passed a parameter False to indicate the current process is not a branch or composition
respectively. The if statement checks if the input process uses a standard channel, and gives a simpler
encoding if so. The else clause generates a new channel name, updates contChanTypes, adds the
payload to contChanTypes if it is a channel, adds the new channel to the encoding function and adds
the encoded string to the string builder. It then encodes the type of the newly generated type annotation.
 is used as a placeholder for processes, N is used as a placeholder for types and ? is used so that type
annotations are inserted in the correct order.

26

4.4 Typechecking

Typechecking is implemented in SPEListener.py. Given a program in either session- or
linear-typed π-calculus, the listener traverses the syntax tree of this program, applying typing
rules as appropriate and generating an output string detailing what typing rules it applies.

The listener starts by collecting types from the type declarations at the start of the program, if
there are any. Once it has looked at all of these, it now has the initial typing context gamma. It
then begins traversing the processes. As many of the process typing rules involve the context
split or context combination operator and using one of the separated typing contexts in another
typing rule, the listener needs some way of saving contexts for later, which is accomplished
through the gammaStack. For all typing rules, the current typing context is retrieved from the
stack, premises of the typing rule which do not involve another typing rule are checked, and
then any typing contexts that are used to check another typing rule in the premise are added to
the stack so that those can be checked when the listener’s traversal reaches them.

VariableNameCollector.py is also used in the typechecking, this time to aid the context
split or context combination operators. When using these operators, a list of variable names is
used to decide which linear types should go into which of the separated typing contexts, those
in the list going into the first, all others into the second. In T-Par and Tπ-Par, Variable-
NameCollector.py is used to collect all of the variable names used in the left arm of the
parallel composition, so that these are placed into the first typing context. For Tπ-Par, Vari-
ableNameCollector.py can also collect what each channel is used for, i.e. which capability
of a linear channel appears in the left arm of the parallel composition.

Listing 4.2 presents as an example the function enterInputSesSTCh, the function used
to typecheck a session-typed input process. The function enterInputLinLTCh, used to
typecheck a linear-typed input process, is presented in Listing 4.3. Note the names of these
functions, InputSesSTCh and InputLinLTCh, each contain two references to which typing
system is used. This is because the naming convention we used for typechecking in session types is
to add STCh to the function name, and LTCh for linear types, for example enterOutputSTCh
and enterOutputLTCh. However, input processes are defined with two separate grammar
rules InputSes and InputLin, so that an input process’s type annotations may contain either
session types or linear types. The functions enterInputSesLTCh and enterInputLinSTCh
do exist, but as they are not meaningful, they simply throw errors and cause the typechecking to
fail.

27

1 def enterInputSesSTCh(self, ctx):
2 self.gamma = self.gammaStack.pop()
3 trueChan = self.getReplacement(ctx.channel)
4 truePL = self.getReplacement(ctx.payload)
5 (gamma1, gamma2) = self.splitGamma(self.gamma, [trueChan.getText()])
6 chanType = gamma1.get(trueChan.getText())
7 payloadType = ctx.tType()
8 if isinstance(payloadType, PiCalcParser.BasicSesTypeContext):
9 payloadType = payloadType.basicSType()
10 elif isinstance(payloadType, PiCalcParser.SessionTypeContext):
11 payloadType = payloadType.sType()
12 if not isinstance(chanType, PiCalcParser.ChannelTypeContext):
13 if not isinstance(chanType, PiCalcParser.ReceiveContext):
14 self.tcErrorStrBuilder = self.tcErrorStrBuilder = "<span

class=’error’>ERROR: Typechecking rule T-In failed due to " +
trueChan.getText() + ". Input process on channel not of receive
type.\n"

15 raise self.typecheckException
16 chanPLType = chanType.tType()
17 if isinstance(chanPLType, PiCalcParser.BasicSesTypeContext):
18 chanPLType = chanPLType.basicSType()
19 elif isinstance(chanPLType, PiCalcParser.SessionTypeContext):
20 chanPLType = chanPLType.sType()
21 if not isinstance(payloadType, type(chanPLType)):
22 self.tcErrorStrBuilder = self.tcErrorStrBuilder = "<span

class=’error’>ERROR: Typechecking rule T-In failed due to " +
truePL.getText() + ". Input process payload has type annotation that
does not match channel type.\n"

23 raise self.typecheckException
24 else:
25 augmentations = {trueChan.getText(): chanType.sType(), truePL.getText():

chanPLType}
26 gamma2 = self.augmentGamma(gamma2, augmentations)
27 self.gammaStack.append(gamma2)
28 self.typeCheckStrBuilder = self.typeCheckStrBuilder.replace(u"�",

u"�4T-In4�", 1)
29 self.printVariableTypeRule(trueChan, gamma1)
30 else: (...)

Listing 4.2: enterInputSesSTCh, the function used to typecheck a session-typed input process.
ctx is as described in Listing 4.1. self.getReplacement returns the variable which replaces
the channel or payload, should either of those be the dummy variable of a process naming declaration.
self.splitGamma represents the context split operator. It is passed the typing context to split and a
list of variables which if linear should be placed in the first context, with all other linear variables placed
in the second. The function then retrieves the types of the channel and the payload, and checks if the
channel is a standard channel or a receive session. It then checks that the type of the payload matches the
channel type’s payload type. The function then prepares the typing context for the continuation process and
adds the typing rule into the typechecking output. self.printVariableTypeRule inserts into
the typechecking output the typing rule for the channel i.e. T-Var. The final else clause is the code for
rule T-StndIn and is near identical to lines 16-29, so it has been omitted for sake of brevity. � is used as
a placeholder for typing rules, 4 is used as a placeholder for commas as a separator between the rules.

28

1 def enterInputLinLTCh(self, ctx):
2 self.gamma = self.gammaStack.pop()
3 trueChan = self.getReplacement(ctx.channel)
4 truePLs = [self.getReplacement(pl) for pl in ctx.payloads]
5 (gamma1, gamma2) = self.combineGamma(self.gamma, [(trueChan.getText(),

"Input")])
6 chanType = gamma1.get(trueChan.getText())
7 payloadTypes = copy.deepcopy(ctx.plTypes)
8 for i in range(len(payloadTypes)):
9 if isinstance(payloadTypes[i], PiCalcParser.BasicLinTypeContext):
10 payloadTypes[i] = payloadTypes[i].basicLType()
11 if not isinstance(chanType, PiCalcParser.ConnectionContext):
12 if not isinstance(chanType, PiCalcParser.LinearInputContext):
13 self.tcErrorStrBuilder = self.tcErrorStrBuilder + "<span

class=’error’>ERROR: Typechecking rule Tπ-Inp failed due to " +
trueChan.getText() + ". Input process on channel not of input
type.\n"

14 raise self.typecheckException
15 else:
16 augmentations = {}
17 chanPLTypes = chanType.payloads
18 for i in range(len(payloadTypes)):
19 if isinstance(chanPLTypes[i], PiCalcParser.BasicLinTypeContext):
20 chanPLTypes[i] = chanPLTypes[i].basicLType()
21 if not isinstance(payloadTypes[i], type(chanPLTypes[i])):
22 self.tcErrorStrBuilder = self.tcErrorStrBuilder + "<span

class=’error’>ERROR: Typechecking rule Tπ-Inp failed due to "
+ truePLs[i].getText() + ". Input process payload has type
annotation that does not match channel type.\n"

23 raise self.typecheckException
24 augmentations[truePLs[i].getText()] = chanPLTypes[i]
25 gamma2 = self.augmentGamma(gamma2, augmentations)
26 self.gammaStack.append(gamma2)
27 self.typeCheckStrBuilder = self.typeCheckStrBuilder.replace(u"�",

u"�4Tπ-Inp4�", 1)
28 self.printVariableTypeRule(trueChan, gamma1)
29 else: (...)

Listing 4.3: enterInputLinLTCh, the function used to typecheck a linear-typed input process. This
function works similiarly to enterInputSesSTCh, detailed in Listing 4.2. The main di�erences are
the use of self.combineGamma instead of self.splitGamma and the handling of multiple
payloads. The final else clause has again been omitted for brevity and similarity to lines 16-29.

29

4.5 Semantics

Operational semantics of π-calculus are implemented in an ANTLR listener SPERunner.py.
Given a program in session- or linear-typed π-calculus code, it executes the program by repeatedly
checking for reductions between pairs of processes and applying them, until no more reductions
can be made. For each reduction it makes, it records for the output what this reduction does.

The listener starts by parsing the declarations, gathering any variables to which values are
assigned, then parsing the process, collecting information on what channels exist and what they
communicate with from restrictions. Once the parser reaches a parallel composition, it creates
a list containing the composed processes. This list begins simply as the two arms of the initial
parallel composition, but the listener then refines the list by checking if these are restrictions
or nested compositions, and gathering processes from these. Once the final list of composed
processes has been found, where all of the processes are some process on which a reduction can
occur, the listener starts checking for pairs of processes which can be reduced.

When it has found such a pair, e.g. an output process and an input process, it checks the
channels to see if these processes are communicating. If they are, it then performs the reduction,
replacing the processes in the list with their continuations, and saving what bound variables have
been replaced as a result of communication. After all pairs have been checked, the listener checks
whether all processes are terminated. The listener will then finish execution successfully, begin a
new cycle of checking for reductions, or finish execution unsuccessfully, depending on whether
all processes are terminated, not all processes are terminated and a reduction was made this cycle,
or not all processes are terminated and no reduction was made this cycle.

Listing 4.4 presents as an example the implementation of the reduction rules R-Com and R-
StndCom.

30

1 if isinstance(self.parProcs[i], PiCalcParser.OutputContext) and
isinstance(self.parProcs[j], PiCalcParser.InputSesContext):

2 if (self.getReplacement(i, self.parProcs[i].channel).getText() ==
self.chanCounterparts[self.getReplacement(j,
self.parProcs[j].channel).getText()]) and (self.getReplacement(j,
self.parProcs[j].channel).getText() ==
self.chanCounterparts[self.getReplacement(i,
self.parProcs[i].channel).getText()]):

3 payloadText = self.getReplacement(i, self.parProcs[i].payloads[0]).getText()
4 if isinstance(self.parProcs[i].payloads[0], PiCalcParser.ExprValueContext):
5 evalExpr =

self.evaluateExpression(self.parProcs[i].payloads[0].expression(), i)
6 payloadText =

self.printExpression(self.parProcs[i].payloads[0].expression(), i) +
" = " + evalExpr.getText()

7 self.replacements[j][self.parProcs[j].payload.getText()] = evalExpr
8 else:
9 if isinstance(self.getReplacement(i, self.parProcs[i].payloads[0]),

PiCalcParser.NamedValueContext) and self.getReplacement(i,
self.parProcs[i].payloads[0]).getText() in self.variableValues:

10 payloadText = payloadText + " = " +
self.variableValues[self.getReplacement(i,
self.parProcs[i].payloads[0]).getText()].getText()

11 self.replacements[j][self.parProcs[j].payload.getText()] =
self.getReplacement(i, self.parProcs[i].payloads[0])

12 if self.getReplacement(i, self.parProcs[i].channel).getText() ==
self.getReplacement(j, self.parProcs[j].channel).getText():

13 self.executionStrBuilder = self.executionStrBuilder + "Sending " +
payloadText + " over " + self.getReplacement(i,
self.parProcs[i].channel).getText() + ", replacing " +
self.parProcs[j].payload.getText() + ". (R-StndCom)\n"

14 else:
15 self.executionStrBuilder = self.executionStrBuilder + "Sending " +

payloadText + " from " + self.getReplacement(i,
self.parProcs[i].channel).getText() + " to " +
self.getReplacement(j, self.parProcs[j].channel).getText() + ",
replacing " + self.parProcs[j].payload.getText() + ". (R-Com)\n"

16 self.parProcs[i] = self.parProcs[i].processSec()
17 self.parProcs[j] = self.parProcs[j].processSec()
18 reductionMade = True

Listing 4.4: The implementation of the reduction rules R-Com and R-StndCom. self.parProcs is
the list of processes composed in parallel, and self.chanCounterparts is a list recording where
each channel communicates with, i.e. itself if it is a standard or linear channel, or its co-name if it is a
session endpoint. self.getReplacement returns what a variable has been replaced by as a result of
communication, if it has been replaced. Once the listener has determined that the processes can communicate,
it checks if the payload is an expression, and evaluates it if so, and if not, it checks if it is a named variable
with an assigned value. In either of these cases, the value of the payload is printed in the output along
with the payload itself. The input process’s payload variable is replaced with the output process’s. The
listener then checks if the reduction rule being applied is R-Com or R-StndCom, and adds the appropriate
string to the execution output. The list of processes composed in parallel is updated with the continuation
processes, and the listener makes a note that a successful reduction was made.

31

5 Evaluation

5.1 User Study

To evaluate how effective the web app is as a teaching tool, we performed a user study. We
gave participants access to the web app, and a survey asking them to perform some tasks in the
web app and then rate their experience. The full survey can be seen in Appendix A.1. Participants
were gathered in the following way:

• One group of 5 participants who were not already familiar with π-calculus.
• One group of 5 participants who had been formally taught π-calculus, in the Theory of
Computation course. Of this group:

– 3 participants had taken Theory of Computation in the academic year 2017-2018,
and so had not been formally taught session types.

– 2 participants had taken Theory of Computation in the academic year 2018-2019,
and so had been formally taught session types.

Participants already familiar with π-calculus were used to make sure that the web app was not
attempting to teach π-calculus in a way so different from how it is normally taught that it would
confuse anyone who had previously learned it in those ways, and so it would still be usable by
people already familiar.

The main aims of the user study were the following:

Aim 1 Find out how well participants felt the user guide explains the concepts of typechecking,
semantics and the encoding

Aim 2 Find out how well participants felt the user guide had taught them about writing π-
calculus code.

Aim 3 Find out how the participants felt the web app had affected their understanding of session
types and linear types

Aim 4 Find out how the participants felt the web app had affected their understanding of
π-calculus.

Aim 5 Find out how the modified syntax might affect the usability of the site for those already
experience with π-calculus.

The survey in the user study started by asking participants how familiar they already were
with π-calculus and with session types and linear types. This was done so that the results could
be considered in the same groups that participants were gathered in, as although we knew
beforehand which group each participant was in, the results are stored anonymously. Charts of
the responses to these introductory questions can be seen in Figure 5.1 and Figure 5.2.

32

Figure 5.1: The responses to the question asking how familiar participants are with π-calculus. Options
ranged from 1 to 5, 1 being labelled "Never heard of π-calculus" and 5 being labelled "Very familiar with
π-calculus". As expected, all participants from the group not already familiar with π-calculus answered
lower than all participants from the group already familiar.

Figure 5.2: The responses to the question asking how familiar participants are with session types and
linear types in π-calculus. As expected, no participants in the group unfamiliar with π-calculus were
familiar with session types or linear types in π-calculus. Those already familiar with π-calculus were a
mixture of people familiar and unfamiliar with session types or linear types.

The survey then prompted the participants to read the web app’s user guide, and then perform
three tasks in the web app. The survey did not record any information directly related to the
participant’s performance in these tasks. The first of these tasks was to examine an example
program and consider how this program would typecheck, execute and encode, then to perform
all three of these actions in the web app and compare the results to what they expected. This was
designed to achieve Aim 1.
The second task gave them an incomplete example program containing a branch process with

three branches, and asked the participants to write processes which would act as the counterpart
to each branch. This was designed to achieve Aim 2.

33

The third task gave an example program which did not work and would throw errors when
typechecked, and asked users to identify why. It then asked them to correct the issue with the
program, so that it can successfully be typechecked, executed and encoded. This task was also
designed to achieve Aim 2, but by checking their understanding of what is not valid π-calculus,
rather than what is.

To gather the participants opinions on the web app, once they had finished all tasks, the
survey asked them questions on how easy or difficult they found it to understand the user guide,
understand the example programs, write π-calculus code and correct π-calculus code. It then
also asked them how they felt the user study had affected their understanding of session types
and linear types, and of π-calculus, to achieve Aims 3 and 4. Charts of the responses to these
questions can be seen in Figures 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.

Figure 5.3: Responses to the question asking how easy or di�cult participants found it to understand the
web app’s user guide. Options ranged from 1 to 5, 1 being "Very di�cult", 5 being "Very easy". Results
are mixed, leaning towards the user guide being easy to understand, showing that it is generally helpful but
could use improvement.

Figure 5.4: Responses to the question asking how easy or di�cult participants found it to understand the
examples programs from the survey. Options ranged from 1 to 5, 1 being "Very di�cult", 5 being "Very
easy". Results are mixed, showing that the syntax guide may not be su�ciently clear.

34

Figure 5.5: Responses to the question asking how easy or di�cult participants found it to write their
own π-calculus code. Options ranged from 1 to 5, 1 being "Very di�cult", 5 being "Very easy". Many
participants not already familiar with π-calculus struggled with this, showing that the user guide may not
explain coding su�ciently well.

Figure 5.6: Responses to the question asking how easy or di�cult participants found it to correct faulty
π-calculus code. Options ranged from 1 to 5, 1 being "Very di�cult", 5 being "Very easy". Results are
largely negative. However, we think this may be due to the specific example used, as the flaw in the code
was a channel restriction only encompassing two out of the three composed processes. This flaw is identified
by the placement of parentheses, and so is not easily noticable. This example therefore may not have been
the most suitable, and had an example with a less subtle flaw been used, the results of this question may
have been di�erent.

35

Figure 5.7: Responses to the question asking how the web app has a�ected the participant’s understanding
of π-calculus. As expected, those already familiar did not feel they had learned anything new. Some of
those unfamiliar did feel they had learned about π-calculus, but more did not feel any more knowledgeable,
showing that the web app may not be as e�ective as a teaching tool as hoped.

Figure 5.8: Responses to the quesiton asking how the web app has a�ected the participant’s understanding
of session types and linear types. Almost all participants felt their understanding had been improved,
showing that the web app is e�ective in teaching the concepts of session and linear types.

Participants already familiar with π-calculus were also asked for comments on the web app’s
syntax, in comparison to the standard syntax. The responses are as follows:

• "I personally prefer the standard syntax, as it’s easier for me to read matching communica-
tions"

• "Both standard picalc syntax and the syntax of the webapp’s picalc are VERY difficult to
read due to how visually dense they are, plus how horizontal they are. I found myself
constantly having to scroll horizontally to read various parts of the code, which hindered
my understanding."

• "Seems a little bit more annoying to write with"
• 2 participants did not give any comment.

36

This questionwas used to achieveAim5. As can be seen, theweb app’s syntaxwas not preferable
to the standard syntax among those who chose to comment. This result is unsurprising, as
the syntax modification was made with new users in mind.
Overall, the results show that while the web app succeeded in teaching most partici-

pants about session types and linear types, it was less successful in teaching them about
π-calculus itself. Additionally, while the user guide was generally helpful, there is room for
improvement. As most of the troubles participants had appears to be with code, these improve-
ments would likely come in the form of more detailed explanations of the processes, and perhaps
including an example program in the user guide to help illustrate how the code is to be formed.

In hindsight, while the user study did give valuable information on the effectiveness of the
web app as a teaching tool, more information could’ve been gathered with better questions.
For example, while participants with experience of π-calculus were asked for comments on the
syntax, inexperienced participants were not. Asking these users about the syntax could have been
a valuable way of finding out whether the web app’s syntax is in fact easier to understand, as is
hoped. Additionally, some participants commented on the lack of a question asking for general
comments about the web app. This could have given us an idea of why, for example, they found
the user guide difficult to understand, and thus how it can be improved to be more helpful.

As none of the participants had been formally taught of the encoding, there was little focus
on this in the user study, being mentioned only in the first task. In hindsight, this is perhaps
something that should have been more prominent in the evaluation, as it is a major focus of the
overall project.

A signed ethics checklist, denoting that the user study complied with the ethics requirements
of the University of Glasgow’s School of Computing Science, can be found in Appendix A.2.
The introduction and debriefing scripts used in the user study can be found in Appendices A.3
and A.4 respectively.

37

6 Conclusion

This project set out to develop a tool which could be used both as a teaching tool for π-calculus,
session types, and linear types and as a tool to be used by people familiar with these concepts to
aid them in using the encoding from session types to linear types. In those senses, the project has
been reasonably successful. It has been shown through our user study that our tool can be helpful
as a teaching tool for π-calculus, though not as much as hoped, and for session types and linear
types. The project is also capable of automatically carrying out the encoding of session-typed
π-calculus into linear-typed π-calculus, although the modified syntax of the tool, aimed at new
users of π-calculus, may affect its usefulness for experienced users.

6.1 Related Works

Fuse is a library, detailed in "A simple library implementation of binary sessions" (Padovani
2017), which implements session types into OCaml. FuSe uses the encoding from session types
to linear types to simplify its typechecking, in particular duality checking, while still using the
semantics of session types. That is, while the types are represented with the continuation-passing
principle, the semantics does not involve the creation or communication of any continuation
channels. The encoding is used for types to allow a channel to be represented as a pair of
capabilities, <α , β>, where α is the type the channel is capable of receiving and β is the type the
channel is capable of sending. For the input and output session types, one of these is empty while
the other is a product type containing the type of the payload, and the type of the continuation
channel as used by the recipient. As a result, the dual of type <α , β> can be expressed <β ,α>,
simplifying duality checking to a type equality check. That is, <δ ,γ> is the dual of <α , β> if
δ == β and γ == α . As a result of this method of representing session types, using FuSe with a
session-typed pi calculus program would require that you encode all of the types in said program
to obtain their representation in FuSe. As our tool can provide the automatic encoding of types,
it can be used to simplify this preparation of the session-typed program for use in FuSe.

"Lightweight Session Programming in Scala" (Scalas and Yoshida 2016) details a method of
using session type methodologies in Scala via a library lchannels, also described in the paper. It
makes use of the encoding of session types into linear types as an intermediary step of converting
session types into Scala types that use the continuation-passing principle. lchannels differs
from FuSe in that the use of the encoding is applied not just to the types but also to the semantics,
with continuation channels being created and exchanged. As with FuSe, however, the automatic
encoding of types from our tool could be used to assist in programming in this library, as it again
removes the effort in manually transforming types in session-typed programs into the format
used by the library.

"A Linear Decomposition of Multiparty Sessions for Safe Distributed Programming" (Scalas
et al. 2017) describes the methodology behind (and an implementation of) an encoding from
multiparty session types to linear types. This encoding makes use of the concepts involved in the
encoding from session types to linear types for the encoding of the projections of a multiparty
session type onto its roles (a partial type representing the interactions a session endpoint has with

38

a particular other endpoint in the session). The overall multiparty session type is encoded as a
labelled tuple containing the encodings of these projections.

6.2 Future Work

Future work on the project would involve both improvement of existing aspects, and addition
of new aspects as an enhancement on the project overall. In terms of improvements to existing
aspects, this would mostly take the form of improving the clarity and understandability of the
web app. As the evaluation found, the user guide was not entirely helpful and easy to understand
for all participants, so future work would most likely start with improvements to the user guide,
such as example code as mentioned near the end of Section 5.1.

Additionally, other aspects were found to be unclear, for example, we noticed during the
evaluation that some error messages the web app can return for invalid π-calculus code can be
unclear or misleading. For example, when typechecking finds a process on a channel of the
incorrect type, e.g. an output process whose channel has an input type, the web app produces an
error message stating "Output process on channel not of output type.". This message is suitable
for the example situation given, however, we have realized that this error message is also produced
when typechecking finds a process on a channel not present in the typing context, i.e. a channel
which does not exist. This gives the user the impression of an issue entirely different from what
is causing typechecking to fail. In particular, this error message would be of no help when the
issue is that, for example, the process attempting to use a channel is not within the restriction of
that channel.

There are a few additional features which could be added to the project as future work. For
example, as mentioned in Section 1.1, the project’s automatic encoding produces linear-typed
π-calculus that could be used with existing tools, with some intermediate link between the tools.
This link could be considered for future work. The link could take the form of a conversion
from code written in the web app’s syntax into code written in the syntax of other existing tools
for π-calculus, or perhaps even a setting for the web app to work entirely in these other syntaxes,
although this would be significantly more work than just a conversion.

During development of the project, there were some features that were intended to be im-
plemented, but were not. One of those was syntax highlighting of the user’s code. This was
attempted near the end of development, using CodeMirror. (CodeMirror Team) CodeMirror is
a JavaScript library for creating in-browser text editors specialized for programming. One of
the features of CodeMirror is syntax highlighting, for which it has many modes for different
programming languages. As our project defined its own language, these modes were not helpful
to us, and we would have to define a custom mode. Defining a full CodeMirror mode would
have been complicated, and too large an undertaking for the amount of time left to develop the
project, so we instead opting to try using the SimpleMode addon, which allows users to define a
simple, less powerful CodeMirror mode using regular expressions. This was attempted, but was
found to also be complicated and did not give the desired results. Due to this, the idea of syntax
highlighting was dropped from the project. Making another attempt at it, this time by defining
a full custom mode, could be a potential avenue for future work.

Another feature that was considered during development was the importing and exporting
of files. The idea was that each of the input areas of the web interface would have another two
buttons underneath, Import and Export. Import would allow the user to upload a text file’s
contents directly into the corresponding input area, and Export would save the current contents
of the corresponding input area to a text file on the user’s machine. This would allow users to
more easily save processes for future use. This feature was considered a low priority and simply

39

did not get implemented before development time on the project had run out. As such, this could
be considered for future work.

As mentioned in Section 5.1, the user study performed on the web app was in some ways
lacking. After implementing some of the mentioned future work, it would be worth considering
performing another, improved user study to find out both how the web app has improved in
the ways that were already evaluated, and to evaluate it in ways that were overlooked in the first
user study. For example, this second user study could contain questions asking how much syntax
highlighting helps the readability of code, and test how well the user guide teaches the concepts
behind the encoding.

40

A Appendices

A.1 User Study Survey

Figure A.1: The introductory questions of the user study survey.

41

Figure A.2: The second section of the survey, containing the tasks to be completed in the web app.

42

Figure A.3: The final section of the survey, containing the questions used to gather the views of the
participants.

43

A.2 User Study Ethics Checklist

44

Figure A.4: The ethics checklist for the user study.

A.3 User Study Introduction Script

"The aim of this is to determine how usable and helpful this web app is for teaching people
about π-Calculus and the encoding from session types to linear types. To do this, we need to
show it to people and see how much it helped them understand those concepts. The survey starts
with a few questions to work out how much you know already, then gives you a few tasks to
complete on the web app and finally asks you some questions on how you felt about it. We’re
only recording your answers to the questions, not your performance in the tasks, so don’t worry
about how you do in those. Feel free to ask questions or withdraw at any point, and let me know
when you’re done. Do you agree to take part? And do you have any questions before starting?"

45

A.4 User Study Debriefing Script

"Like I said before starting, the aim of this survey was to determine how usable and helpful
this web app is in teaching people about π-calculus and the encoding from session types to linear
types. Do you have any questions about any aspects of the survey? My email, and my supervisor’s
email are both on the form, so if you think of any questions, you can reach us through those.
Thank you for helping."

46

Bibliography

CodeMirror Team. CodeMirror. https://codemirror.net/, 2011. Accessed : 25/3/2019.

O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In Proceedings of the 14th
Symposium on Principles and Practice of Declarative Programming, PPDP ’12, pages 139–150, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1522-7. doi: 10.1145/2370776.2370794.
URL http://doi.acm.org/10.1145/2370776.2370794.

O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. Information and
Computation, 256:253 – 286, 2017. ISSN 0890-5401. doi: https://doi.org/10.1016/j.
ic.2017.06.002. URL http://www.sciencedirect.com/science/article/pii/
S0890540117300962.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In C. Hankin, editor, Programming Languages
and Systems, pages 122–138, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN
978-3-540-69722-0.

N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM Trans. Program.
Lang. Syst., 21(5):914–947, Sept. 1999. ISSN 0164-0925. doi: 10.1145/330249.330251. URL
http://doi.acm.org/10.1145/330249.330251.

R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science. Springer-
Verlag, 1980. ISBN 9783540102359. URL https://books.google.co.uk/books?
id=7L1PAQAAIAAJ.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i. Informa-
tion and Computation, 100(1):1 – 40, 1992. ISSN 0890-5401. doi: https://doi.org/
10.1016/0890-5401(92)90008-4. URL http://www.sciencedirect.com/science/
article/pii/0890540192900084.

M. Odersky. Polarized name passing. In P. S. Thiagarajan, editor, Foundations of Software
Technology and Theoretical Computer Science, pages 324–337, Berlin, Heidelberg, 1995. Springer
Berlin Heidelberg. ISBN 978-3-540-49263-4.

L. Padovani. A simple library implementation of binary sessions. Journal of Functional Programming,
27:e4, 2017. doi: 10.1017/S0956796816000289.

T. Parr. ANTLR. https://www.antlr.org/, 2014. Accessed : 20/3/2019.

B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical Structures
in Computer Science, 6(5):409âĂŞ453, 1996. doi: 10.1017/S096012950007002X.

Pocoo Team. Foreword - Flask 1.0.2 Documentation. http://flask.pocoo.org/docs/1.
0/foreword/, 2010. Accessed : 20/3/2019.

Python Software Foundation. Welcome to Python.org. https://www.python.org/, 2001.
Accessed : 26/3/2019.

https://codemirror.net/
http://doi.acm.org/10.1145/2370776.2370794
http://www.sciencedirect.com/science/article/pii/S0890540117300962
http://www.sciencedirect.com/science/article/pii/S0890540117300962
http://doi.acm.org/10.1145/330249.330251
https://books.google.co.uk/books?id=7L1PAQAAIAAJ
https://books.google.co.uk/books?id=7L1PAQAAIAAJ
http://www.sciencedirect.com/science/article/pii/0890540192900084
http://www.sciencedirect.com/science/article/pii/0890540192900084
https://www.antlr.org/
http://flask.pocoo.org/docs/1.0/foreword/
http://flask.pocoo.org/docs/1.0/foreword/
https://www.python.org/

47

D. Sangiorgi. An interpretation of typed objects into typed π-calculus. Information and
Computation, 143(1):34 – 73, 1998. ISSN 0890-5401. doi: https://doi.org/10.1006/
inco.1998.2711. URL http://www.sciencedirect.com/science/article/pii/
S0890540198927110.

A. Scalas and N. Yoshida. Lightweight Session Programming in Scala. In S. Krishnamurthi
and B. S. Lerner, editors, 30th European Conference on Object-Oriented Programming (ECOOP
2016), volume 56 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:28,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-
3-95977-014-9. doi: 10.4230/LIPIcs.ECOOP.2016.21. URL http://drops.dagstuhl.
de/opus/volltexte/2016/6115.

A. Scalas, O. Dardha, R. Hu, and N. Yoshida. A Linear Decomposition of Multiparty Sessions
for Safe Distributed Programming. In P. Müller, editor, 31st European Conference on Object-
Oriented Programming (ECOOP 2017), volume 74 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:31, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-95977-035-4. doi: 10.4230/LIPIcs.ECOOP.2017.24. URL
http://drops.dagstuhl.de/opus/volltexte/2017/7263.

V. T. Vasconcelos. Fundamentals of session types. Information and Computation, 217:52 – 70,
2012. ISSN 0890-5401. doi: https://doi.org/10.1016/j.ic.2012.05.002. URL http://www.
sciencedirect.com/science/article/pii/S0890540112001022.

http://www.sciencedirect.com/science/article/pii/S0890540198927110
http://www.sciencedirect.com/science/article/pii/S0890540198927110
http://drops.dagstuhl.de/opus/volltexte/2016/6115
http://drops.dagstuhl.de/opus/volltexte/2016/6115
http://drops.dagstuhl.de/opus/volltexte/2017/7263
http://www.sciencedirect.com/science/article/pii/S0890540112001022
http://www.sciencedirect.com/science/article/pii/S0890540112001022

	Introduction
	Motivation
	Aims
	Outline

	Background
	-Calculus
	Session Types
	Typechecking
	Semantics

	Linear Types
	Typechecking
	Semantics

	Encoding

	Design
	Syntax
	Typing Extensions
	Web Interface

	Implementation
	Architecture
	Web Interface
	Encoding
	Typechecking
	Semantics

	Evaluation
	User Study

	Conclusion
	Related Works
	Future Work

	Appendices
	Appendices
	User Study Survey
	User Study Ethics Checklist
	User Study Introduction Script
	User Study Debriefing Script

	Bibliography

